СПбГУ, мат-мех

 

 

 

 


English
Dmitriy Stolyarov

 

 

 

 

e-mail: dms at pdmi dot ras dot ru
e-mail for students: dmsforstudents at google dot com

 

My CV

 

My thesis (in Russian)

For students:
Practice class, Analysis
Practice class, Probability 

Papers

 

Bellman function 

Haakan Hedenmalm, Dmitriy M. Stolyarov, Vasily I. Vasyunin, Pavel B. Zatitskiy, A sharpening of Holder inequalityarxiv.org/abs/1708.08846

 

Paata Ivanisvili, Dmitriy M. Stolyarov, Vasily I. Vasyunin, Pavel B. Zatitskiy, Bellman function for extremal problems in BMO II: evolution, http://arxiv.org/abs/1510.01010, to appear in Memoirs AMS.

 

Dmitriy M. Stolyarov, Pavel B. Zatitskiy, Theory of locally concave functions and its applications to sharp estimates of integral functionals, arxiv.org/abs/1412.5350, Advances in Mathematics 291 (2016), 228--273.

 

Paata Ivanisvili, Nikolay N. Osipov, Dmitriy M. Stolyarov, Vasily I. Vasyunin, Pavel B. Zatitskiy, Sharp estimates of integral functionals on classes of functions with small mean oscillation, arxiv.org/abs/1412.4749, Comptes Rendus Mathematique 353:12 (2015), 1081--1085.

 

Paata Ivanisvili, Dmitriy M. Stolyarov, Pavel B. Zatitskiy, Bellman VS Beurling: sharp estimates of uniform convexity for $L^p$ spacesarxiv.org/abs/1405.6229,  Algebra i Analiz, 27:2 (2015), 218--231 (in Russian); English translation: St.-Petersburg Mathematics Journal 27 (2016), 333--343.

 

Alexander A. Logunov, Leonid Slavin, Dmitriy M. Stolyarov, Vasily Vasyunin, Pavel B. Zatitskiy, Weak integral conditions for~$\BMO$, arxiv.org/abs/1309.6780, Proceedings AMS, 143 (2015), 2913--2926.

 

Paata Ivanishvili, Nikolay N. Osipov, Dmitriy M. Stolyarov, Vasily I. Vasyunin, Pavel B. Zatitskiy, Bellman function for extremal problems in~$\BMO$, arxiv.org/abs/1205.7018,  Transactions AMS 368 (2016), 3415--3468; 

            Short report: Paata Ivanishvili, Nikolay N. Osipov, Dmitriy M. Stolyarov, Vasily I. Vasyunin, Pavel B. Zatitskiy, On Bellman function for extremal problems in~$\BMO$, Comptes Rendus Mathematique,  350:11 (2012), 561--564.

            Also see earlier version (in Russian) at   www.pdmi.ras.ru/preprint/2011/rus-2011.html

 

L_1 and L_{\infty}-spaces

D. M. Stolyarov, Dorronsoro's theorem and a small generalisation, arxiv.org/abs/1506.06383  Zapiski nauchn. sem. POMI 434, English translation: Journal of Mathematical Sciences (New York), 215:5, 624--630.

 

K. Kazaniecki, D. M. Stolyarov, M. Wojciechowski, Anisotropic Ornstein non-inequalities, arxiv.org/abs/1505.05416, Analysis & PDE 10:2 (2017). 351--366.

 

D. M. Stolyarov, Bilinear embedding theorems for differential operators in $\mathbb{R}^2$, arxiv.org/abs/1406.2009, Zapiski nauchn. sem. POMI, 424 (2014), 210--235 (Russian); English translation: Journal of Mathematical Sciences (New York), 206:5 (2015), 792--807.

 

D. M. Stolyarov, M. Wojciechowski, Dimension of gradient measures, arxiv.org/abs/1402.4443, Comptes Rendus Mathematique, 352:10 (2014), 791--795

 

S. V. Kislyakov, D. V. Maksimov, D. M. Stolyarov, Differential expression with mixed homogeneity and spaces of smooth functions they generate in arbitrary dimension,  Journal of Functional Analysis, 269:10 (2015), 3220--3263;

            Short report: S. V. Kislyakov, D. V. Maksimov, D. M. Stolyarov, Spaces of smooth functions generated by nonhomogeneous differential expressions, Functional Analysis and its Applications,  47:2 (2013), 157--159,

            Also see earlier preprint (which differs from the submitted version): S. V. Kislyakov, D. V. Maksimov, D. M. Stolyarov, Differential expressions with mixed homogeneity and spaces of smooth functions they generate, arxiv.org/abs/1209.2078.

 

D. M. Stolyarov, New correction theorems in the light of Littlewood--Paley--Rubio de Francia inequality, arxiv.org/abs/1105.6215v1, Zap. nauchn. sem. POMI,  389 (2011), 232--251 (Russian); English translation: Journal of Mathematical Sciences (New York), 182:5 (2012), 714--723.

 

Regularized traces

A. I. Nazarov, D. M. Stolyarov, P. B. Zatitskiy,  Tamarkin equiconvergence theorem and trace formula revisited, arxiv.org/abs/1210.8097, Journal of Spectral Theory, 4:2 (2014),  365--389.

 

A. I. Nazarov, D. M. Stolyarov, P. B. Zatitskiy, On formula of regularized traces, arxiv.org/abs/1103.5775, DAN, 442:2 (2012), 162--165 (Russian); English translation: Doklady Mathematics, 85:1 (2012), 29--32.

              There were earlier versions of this paper, they can be found at www.mathsoc.spb.ru/preprint/2010/index.html and www.mathsoc.spb.ru/preprint/2011/index.html .

 

Miscellaneous

W. Smith, D. M. Stolyarov, A. Volberg, Uniform approximation of Bloch functions and the boundedness of the integration operator on $H^{\infty}$, arxiv.org/abs/1604.05433, Advances in Mathematics 314 (2017), 185--202.

W

D. M. Stolyarov, Functions whose Fourier transform vanishes on a surfacearxiv.org/abs/1601.04604

 

D. M. Stolyarov, V. I. Vasyunin, P. B. Zatitskiy, Monotonic rearrangement of functions with small mean oscillation, arxiv.org/abs/1506.00502, Studia Mathematica 231:3  (2015), 257--268.

 

A. L. Glazman, P. B. Zatitski, A. S. Sivatski, D. M. Stolyarov, Forms of higher degree over certain fields, Zap. nauchn. sem. POMI (Journal of Mathematical Sciences), 394 (2011), 209--217.

 

F. V. Petrov, D. M. Stolyarov and P. B. Zatitskiy, On embeddings of finite metric spaces in $l_{\infty}^n$, arxiv.org/abs/0903.4355, Mathematika, 56:1 (2010), 135--139.

 

A. L. Tulupyev, D. M. Stolyarov, M. V. Mentyukov, A representation for local and global structures of an algebraical Bayesian network in java applications, Trudy SPIIRAN 5 (2007), 71--99, (Russian).

 

 

 

Notes

(these notes usually include proofs of well-known statements or similar things I write down for myself)


 

Approximation of analytic functions on strips and semi-strips (addendum to my paper with Smith and Volberg)

Cluing functions: on a reasoning by Fedor Nazarov (in Russian) 

Latala's inequality

Rank-one convexity

Dorronsoro's theorem

Ito seminar notes (Achtung!: handwriting in Russian)

Convexity in Banach spaces: B-convexity, K-convexity, Pisier's great theorem, the Beurling--Kato theorem (handwriting in Russian

 

Санкт-Петербург 199178, 14 линия В.О., дом 29Б

Тел.: (812) 363-68-71

secretariat@chebyshev.spb.ru